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Abstract

Humans seamlessly make sense of a rapidly changing environment, using a
seemingly limitless knowledgebase to recognize and adapt to most situations
we encounter. This knowledgebase is called semantic memory. Embodied cog-
nition theories suggest that we represent this knowledge through simulation:
understanding the meaning of coffee entails reinstantiating the neural states
involved in touching, smelling, seeing, and drinking coffee. Distributional
semantic theories suggest that we are sensitive to statistical regularities in nat-
ural language, and that a cognitive mechanism picks up on these regularities
and transforms them into usable semantic representations reflecting the con-
textual usage of language. These appear to present contrasting views on
semantic memory, but do they? Recent years have seen a push toward combin-
ing these approaches under a common framework. These hybrid approaches
augment our understanding of semantic memory in important ways, but cur-
rent versions remain unsatisfactory in part because they treat sensory-
perceptual and distributional-linguistic data as interacting but distinct types of
data that must be combined. We synthesize several approaches which, taken
together, suggest that linguistic and embodied experience should instead be
considered as inseparably entangled: just as sensory and perceptual systems
are reactivated to understand meaning, so are experience-based representa-
tions endemic to linguistic processing; further, sensory-perceptual experience
is susceptible to the same distributional principles as language experience. This
conclusion produces a characterization of semantic memory that accounts for
the interdependencies between linguistic and embodied data that arise across
multiple timescales, giving rise to concept representations that reflect our
shared and unique experiences.
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1 | INTRODUCTION

Understanding how we represent meaning—the core problem of semantic memory research—is central to understand-
ing how humans operate in the world: how we recognize things as the same even when encountered in different condi-
tions, how we remember objects and events and deploy that knowledge in different situations, how we know (or think
we know) what is similar to what, and how we communicate with each other despite experiencing the world differ-
ently. None of these would be possible without semantic memory.' This article will explore and review complementar-
ities between two influential accounts of meaning—embodied cognition and distributional semantic models. Embodied
and distributional accounts have typically been presented as contrasting views of semantic memory, owing largely to a
lack of cross-disciplinary communication: embodied theories typically derive from experimental psychology, while dis-
tributional semantic models emerge from computational linguistics. In this article, we synthesize several approaches to
reconciliation, which taken together suggest that embodied experience is a type of distributional information similar to
that captured in distributional semantic models? (e.g., Andrews et al., 2009; Hoffman et al., 2018; Johns & Jones, 2012;
Steyvers, 2010), and language and its distributional characteristics reflect a type of embodied experience (e.g., Borghi
et al., 2019; Clark, 2006; Dove, 2018, 2020). That is, we can consider distributional and embodied information as funda-
mentally the same type of data, entangled and mutually influencing each other across multiple timescales. The repre-
sentations that emerge through this interaction reflect the characteristics of our unique and shared environments.

In this article, we first provide a brief historical review of embodied and distributional semantic models, outlining major
advantages and criticisms of each. Next, we review reconciliation efforts and outline remaining issues. We then synthesize
these interdisciplinary efforts toward reconciliation, providing a rough sketch of how both embodied and distributional knowl-
edge can be obtained via the same sensitivity to regularities present in experience-based input. This sensitivity to experience-
based input engenders semantic representations reflective of our shared and unique experiences. We conclude by offering sug-
gestions for future (interdisciplinary) work considering embodied and distributional data in a common framework.

2 | HISTORICAL OVERVIEW

Modern semantic memory research has chiefly operated on two independent paths: distributional semantic models
(e.g., Griffiths et al., 2007; Landauer & Dumais, 1997; Lund & Burgess, 1996) and embodied cognition
(e.g., Allport, 1985; Barsalou, 1999; Damasio, 1989; Glenberg, 1997). Until the last decade or so, these fields have been
largely independent due to apparent differences in the characterization of meaning.® Distributional models suggest that
meaning can be inferred from the contexts (almost always operationalized as language contexts) in which words
appear—this is well illustrated by Firth's (1957) supposition that “You shall know a word by the company it keeps.”
Meaning in (language-based) distributional models is derived from and represented in terms of statistical patterns of
co-occurrence with other words in a language. Embodied approaches, on the other hand, suggest that meaning is
grounded in our sensory, perceptual, motor, interoceptive, and introspective experiences with the world
(e.g., Barsalou, 1999). Context is also important in embodied theories (for reviews see, e.g., Yee & Thompson-
Schill, 2016; Yeh & Barsalou, 2006), but this context is situated or grounded: to access the meaning of a word, we simu-
late the bodily states associated with experiencing that concept “in the wild” (Barsalou, 1999), and this simulation var-
ies according to the current context as well as an individual's history.

While recent years have seen growing interest in reconciling distributional and embodied perspectives in a common
model (e.g., Andrews et al., 2009), such approaches often consider the information (i.e., the input) that goes into distri-
butional models and embodied information as two distinct types of data in need of combination. And so the question
remains: what is the relationship between distributional and embodied information? Before speculating on a solution,
we provide a historical review of embodied and distributional semantics as they have developed independently.

2.1 | Embodied semantics

2.1.1 | Philosophical and historical background

Embodied approaches can be traced back to British Associationism of the 17th and 18th centuries. According to empiri-
cist philosopher John Locke (1689/1975), conceptual knowledge is built through experiencing the environment, where
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the environment is experienced in terms of elementary perceptual attributes, and concept representations are built
incrementally upon these attributes. Thus, coffee is represented in terms of its color, smell, taste, manipulability, and so
on (more contemporarily, this idea was articulated by Allport, 1985; see Figure 1). For David Hume (1748/1977), con-
ceptual knowledge could also be traced to world experiences. Critically, Hume suggested that consistent association of
the senses leads those sensory experiences to become connected in the mind, such that with more frequent conjoint
experience, the appearance of one sensory experience can activate its associates.

In 1900, neurologist Carl Wernicke outlined a neurophysiological framework that incorporated many of the princi-
ples of British Associationism, bearing strong resemblance to contemporary theories of conceptual knowledge
(e.g., Damasio, 1989). Wernicke (1900) suggested that recurring stimuli engender the same pattern of activation with
each instantiation, and those stimuli retain their mutual association as a memory trace distributed across sensory-
perceptual areas. For instance, when we drink coffee, we jointly experience its smell, taste, and color, and this associa-
tion is not only reflected in joint activation of olfactory, gustatory, and visual brain systems, but their (neural) associa-
tion is also retained in memory. These associative networks are established via neural connectivity (in more
contemporary terms, between convergence zones, which are bundles of neurons sensitive to co-occurring inputs,
e.g., the convergence of information about sound and visual motion; Damasio, 1989). And once an associative network
is established, Wernicke suggested (as Hume did centuries earlier), partial activation of the network can trigger activa-
tion of the entire network, where the network corresponds to all information associated with the concept (Gage &
Hickok, 2005). This means that any experience associated with the concept can activate relevant conceptual
knowledge—for example, because the word coffee tends to be experienced in the same settings as actually experiencing
coffee, merely hearing or seeing the word will activate a network of sensory and perceptual brain areas involved in see-
ing, smelling, and tasting coffee (see also Pulvermiiller, 2013, who describes these phenomena in terms of Hebbian
learning, and Yee & Thompson-Schill, 2016, who describe conceptual knowledge as “the flow of activation [...] through
a network of connections that cumulatively reflect prior experience,” p. 1022, reflecting Jeff Elman's (1990) approach to
knowledge formation using simple recurrent networks; see Box 1).

2.1.2 | Empirical evidence

Is it true that areas of the brain that, for example, are involved in perceiving the color of coffee or in guiding action
when sipping from a mug also become active when thinking about the color associated with coffee or when reading the
word sip? Sometimes. Early neuroimaging studies did not find direct overlap between brain regions involved in percep-
tion and action and the representation of sensorimotor information. Rather, they observed that, for example, areas of
the brain adjacent to those involved in perceiving color are activated when we say what an object’s most typical color is
(e.g., brown for coffee) as compared to saying its name (Chao & Martin, 1999; Martin et al., 1995), and that when pas-
sively reading action verbs implicating movement of the hands, legs, and mouth, areas adjacent to the corresponding
motor region are activated for words like sip (Hauk et al., 2004). However, more recent studies have observed evidence
of direct overlap. For instance, when color-perception areas were identified using a more demanding color perception
task (i.e., making subtle judgments about differences in the hues of presented colors) direct overlap was observed
between areas involved in color perception and color knowledge (Simmons et al., 2007). This implies that at least some
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BOX 1 The simple recurrent network

The simple recurrent network (SRN; Elman, 1990; Figure 2) is a classic example of how, through accumulated
experience over time with words (or, in principle, any experience), concepts and categories can emerge without
explicit feedback. The network retains a copy of its previous state (i.e., the context) and uses this to predict the
next element in a sequence. Importantly, although the hidden units of the SRN are undifferentiated computa-
tionally, the representations that emerge after learning—which reflect accumulated knowledge about the con-
texts in which we experience things—are not undifferentiated functionally. Due in part to this computational
plasticity, SRNs have been used to understand how abstract structure emerges in many contexts, including both
embodied (e.g., Yee & Thompson-Schill, 2016, who based their account on conceptual principles borrowed from
the SRN) and distributional (e.g., Hoffman et al., 2018—an implemented model) experience frameworks. In our
view, then, knowledge of a concept is no more than the knowledge of the contexts (whether embodied or distri-
butional) in which that concept (or the word|[s] that refer to it) occurs (see also Elman, 2009; Yee & Thompson-
Schill, 2016). Understanding the computational principles of the SRN is critical to understanding some of the
concepts—as well as the implemented hybrid models (e.g., Hoffman et al., 2018)—discussed in this article. We
also discuss insights generated by the SRN with respect to abstraction and cognition more broadly elsewhere
(Davis, Altmann, & Yee, 2020b).

part of the system supporting color perception also represents color knowledge (for further discussion, see
Martin, 2016). In addition to the visual system, similar findings have been reported for motor (in premotor cortex;
Willems et al., 2010), auditory (e.g., Kiefer et al., 2008), and emotional systems (Ziegler et al., 2018). These are only a
few examples of evidence supporting embodied cognition—there is now abundant empirical work (described in greater
detail elsewhere; e.g., Barsalou, 2016; Meteyard et al., 2012) suggesting that conceptual knowledge is (at least partially)
sensorimotor-based.

2.1.3 | Critiques

Arguments advanced against embodied cognition have pointed out that this overlap or adjacency of activation need not
imply that sensory and/or motor regions are functionally involved in conceptual processing. Rather, it has been argued
that activation in these areas may simply be a (downstream) consequence of conceptual processing that actually occurs
without any functional involvement of sensory or motor regions (see, e.g., Mahon & Caramazza, 2008; Mahon, 2015).
However, there is now evidence from neuropsychological, neurostimulation, and behavioral studies suggesting that not
only are the same regions for perceiving objects active when thinking about those objects in their absence, but also that
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those regions are to some degree necessary for comprehension. For example, compared with age-matched controls,
patients with Parkinson's disease have difficulty accessing the meaning of words and sentences referring to motor
action (Fernandino et al., 2013a, 2013b; see also Buccino et al., 2018). This suggests that the motor system (which is
compromised in Parkinson's disease) is necessary for understanding the meaning of manually experienced concepts
(for related evidence in various sensorimotor domains and in both healthy and patient populations, see e.g., Davis,
Joergensen, et al., 2020; Trumpp et al., 2013; Vukovic et al., 2017; Yee et al., 2013).

Another critique levied against embodied approaches is that there are many concepts, for example, idea or justice
(typically referred to as “abstract” concepts) for which it is not obvious that sensory or motor systems would be rou-
tinely involved when we experience them. We have only just begun to understand the representational substrates of
such concepts, but there is emerging evidence that we understand concepts like justice at least in part by reactivating
the emotion systems involved in feeling justice (e.g., Kousta et al., 2011; Vigliocco et al., 2013), the social systems
involved in understanding justice (e.g., Rice et al., 2018), the memory systems involved in encoding environmental cues
to justice (e.g., Davis, Altmann, & Yee, 2020a), the interoceptive systems that process internal bodily sensations associ-
ated with experiencing an instance of justice (e.g., perhaps a steadying heartrate and reduction in muscle tension; Con-
nell et al., 2018), the magnitude systems involved in comprehending quantity (e.g., Wilson-Mendenhall et al., 2013), the
temporal brain systems involved in processing time and duration (for discussion, see Binder et al., 2016; Davis,
Altmann, & Yee, 2020a) and the linguistic systems involved in communicating about justice (e.g., Borghi &
Zarcone, 2016).

Concepts that are supported by these systems more than by sensory or motor systems tend to be considered more
“abstract.” But even highly abstract concepts like idea involve some sensorimotor experience (see Lynott et al., 2020).
Indeed, it is increasingly accepted that abstractness is a continuum—there is no real dichotomy between abstract and
concrete concepts. Instead, where a given concept falls on the abstract-to-concrete continuum is determined by the rela-
tive contributions of sensorimotor vs. these other systems (for further discussion, see Vigliocco et al., 2009; for a more
detailed discussion of “abstract” concepts and embodied frameworks, see Borghi et al., 2017, 2019).

Further, implicit in experience-based, embodied theories of semantic memory is the idea that conceptual representa-
tions are individualized. That is, because we have different experiences, my representation of coffee is different from that
of my local barista. But if we all have different semantic representations (e.g., if coffee means something different to me
than it does to you), how can we communicate with each other? This poses a difficult—though not insurmountable—
problem for embodied theories (see, e.g., Yee & Thompson-Schill, 2016). Later in this article, we speculate on how unit-
ing distributional and embodied data under a common framework provides a potential solution to both the problem of
abstract concepts and the question of how shared meaning is achieved.

Overall, it is becoming increasingly evident that in order to comprehend the meaning of something, it helps to
(at least partially) reengage the neural systems that are involved in actually experiencing that thing. This suggests that
information in these neural systems constitutes part of a concept's meaning. However, most of the effects seen in
embodied cognition research are relatively small: the ability to identify a hammer, for example, is not completely lost
when a patient suffers damage to motor areas of the brain. One might imagine that this lack of catastrophic interference
is a problem for embodied accounts. But there are two reasons for this lack of catastrophic interference. First, because
concepts are distributed over multiple sensorimotor modalities (e.g., motor, visual, auditory; see Figure 1), when one
modality is interfered with, much of the representation may still be available. Second, concepts are also supported by
knowledge that is not directly sensorimotor. This includes information that does not have obvious correlates in any
individual sensory or motor modality (and may be, e.g., emotional, social, or interoceptive, or stored in higher levels of
the semantic system), and it also includes language. Indeed, although much of semantic knowledge comes from direct
experience with objects and actions, much also comes from spoken (and written) language—we have knowledge of
places that we have never been, and of people we have never met. We turn now to semantic knowledge derived from
language input, before considering how sensorimotor and language knowledge may mutually reinforce one another.

2.2 | Distributional semantics
2.21 | Philosophical and historical background

Distributional semantic models have been developed based on the distributional hypothesis, which suggests that a word
derives meaning as a function of the “company it keeps”—that is, the words and linguistic contexts with which it tends
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to occur (e.g., Firth, 1957; Harris, 1954). While some have suggested that the learning mechanisms in distributional
models are general mechanisms that could in principle handle any type of data* (e.g., events, experiences; Landauer &
Dumais, 1997; see also Giinther et al., 2019), the vast majority of implemented models use linguistic corpus data as
input.). Thus, in line with the field more broadly (see e.g., Lenci, 2018), in this article, when we refer to distributional
models we are generally referring to models based on language corpus data.

Despite the fact that meaning in distributional semantic models is almost invariably derived from language input
only, they have been remarkably successful at capturing, in broad strokes, important aspects of the organization of
semantic knowledge. For instance, these models can make human-like judgments about category membership, and
about overall semantic similarity (for review, see Lenci, 2018). In what follows, we present a brief overview of the main
properties of the primary families of distributional semantic models. This will set the stage for later discussion of hybrid
models that incorporate sensory-perceptual data.

The philosophical history of distributional theories can be traced to Wittgenstein (1953/2010), who suggested that
word meaning is characterized by a word's use in language. Distributional frameworks, like embodied semantics, share
the notion that our knowledge is derived from association. But in contrast to embodied semantics, which emphasize
sensory, motor, and action associations, in distributional models, concept representations are computed from word-
based co-occurrence vectors, on which we can measure the similarity of the contexts in which words appear (e.g., our
representation of coffee includes lexical associations with the words mug, sip, and brown, and is related to tea because
both tend to occur in similar contexts). That is, words have meaning by virtue of the frequency with which they co-
occur with other words, or the extent to which they tend to occur in similar contexts. How exactly those statistical pat-
terns of co-occurrence are extracted and analyzed differs among distributional approaches.

2.2.2 | Types of models

Below, we provide a rough characterization of how different types of distributional semantic models build semantic
knowledge. For a more complete picture of current and future directions, we refer the reader to Boleda (2020) and
Lenci (2018), as well as Baroni et al. (2014), Mandera et al. (2017), and Wingfield and Connell (2019).

Early psychological research on distributional semantic models was dominated by count models, which count how
many times a word appears in particular contexts, or how many times other words co-occur with it (for discussion, see
also Baroni et al., 2014; Mandera et al., 2017). Of the count models, latent abstraction models—the most well-known of
which is latent semantic analysis (LSA; Landauer & Dumais, 1997)—have had perhaps the most lasting impact on the
field. These models, in line with the distributional hypothesis, compute co-occurrence frequencies across large corpora
of linguistic contexts. They then apply a dimensionality reduction technique to the data to derive a matrix that is meant
to reflect higher-order semantic relationships. This dimensionality reduction also results in patterns of similarity that
extend beyond co-occurrence: that is, if words tend to occur in similar (but not necessarily the same) contexts, they
come to be related. These features allow the models to perform well on semantic similarity judgments and English-
language tests for nonnative speakers (Landauer & Dumais, 1997).

Passive co-occurrence models are similar in their counting of word co-occurrences across contexts, but they do not
perform dimensionality reduction as in latent abstraction models. The most well-known of these models is the hyper-
space analog to language (HAL; Lund & Burgess, 1996). Passive co-occurrence models slide a moving window (window
size is typically on the order of several words or a sentence) over text corpora, allowing for incremental learning of
semantic representations. These models thus generate representations based on a plausible yet simplified mechanism of
human learning, that is, Hebbian learning: they accumulate co-occurrence information over time. Compared to LSA,
the representations that emerge from HAL are sparse, but still predict semantic judgments. More modern instantiations
(e.g., COALS; Rohde et al., 2009) perform even better on such tasks by changing the method of calculating co-
occurrence and applying a decomposition technique (Riordan & Jones, 2011).

In Bayesian models, instead of simply counting co-occurrence statistics (e.g., relying on principles of Hebbian learn-
ing), the problem of human semantic representation is formulated as one of rational statistical inference. The most
influential of these has been the topic model (Griffiths et al., 2007). Such models think of semantic organization proba-
bilistically: any given document is a probability distribution of topics, and each topic is a probability distribution of
words, where the goal of the model is to estimate the distribution of topics in a given text (as opposed to representing a
word in high-dimensional space). Importantly, these models are generative in that they can predict the composition of
future documents given a particular mixture of topics. The topic model also allows words to have different meanings
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depending on the context: since topics are probability distributions over words, a given word differs in its likelihood of
appearing in any number of topics, and thus, that word may have different meanings across topics. Such models are
successful in accounting for synonym judgments, semantic priming in ambiguous words, and so on (see Griffiths
et al., 2007).

Predict models on the other hand share with co-occurrence models the reliance on a context window to understand
word meaning, but instead of simply counting those co-occurrences and representing them in vector form, predict
models use neural networks to derive error-driven predictions about word characteristics. The most prominent family
of predict models is Google's word2vec (Mikolov et al., 2013). These models learn to predict either the current word
given the context (usually a window of a researcher-determined width surrounding the target word; the continuous bag
of words model), or the context words given the current word (skip-gram model). One major advantage of predict
models is that the cognitive mechanism—prediction—is well supported as an actual mechanism of human learning
(see Mandera et al., 2017, for discussion). And the reader may notice that the contingencies between words and their
contexts that are encoded by such models are similar to those learned in models such as the simple recurrent network
(SRN; see Box 1), in which recurrence through time, coupled with a task to explicitly predict what will come next
(Elman, 1990), leads to emergent representations that reflect the encoding of such contingencies. Whereas the basic
SRN does not scale up to large vocabularies or long sequences of text (because information about long-distance depen-
dencies is, in effect, swamped by more local information), contemporary predict models such as word2vec and its suc-
cessors, as well as recurrent neural networks (RNNs) with long short-term memory units (LSTMs), which embody the
basic computational principles of the SRN while avoiding problems with long-distance dependencies, do scale.” But the
nature of the contingencies they are capable of encoding is relatively similar in all cases.

2.2.3 | Critiques

Although the semantic “knowledge” generated by distributional semantic models can approximate human responses in
many semantic tasks, from a psychological perspective, these models are of interest only to the extent that the princi-
ples that shape their operation lend insight into human semantic processing. While some specify basic mechanisms that
might correspond to the way humans encode associations (e.g., passive co-occurrence models are loosely based on
Hebbian learning), other mechanisms (e.g., LSA's dimensionality reduction) incorporate no method for learning across
time (as is present in generative models like the topic model) or for prediction (as is present in predict models), making
them seem implausible (i.e., children presumably do not acquire millions of words only to reduce them into semantic
vectors at a later date). For this reason, some distributional models have been criticized as being mere methodological
tools, not theories of semantic memory (Perfetti, 1998). The most common critique, however, is one that—regardless of
the psychological plausibility of the mechanisms by which they build semantic knowledge—applies to all distributional
semantic models that use only linguistic corpus data as input: unlike embodied theories, typical distributional models
provide no mechanism by which the symbols they process (i.e., words) are linked to the concepts to which they refer—
words are understood through their relations to other words, but how do any of those words latch onto meaning out in
the world? That is, how are they “grounded” in the real world?

The problem of symbol grounding is illustrated by Searle's (1980) Chinese room problem (see also Harnad, 1990). A
variant of the problem goes like this: You are a monolingual speaker of English and isolated in a room with nothing
but a huge book. You have been told how to use this book to look up (based on appearance) any sequence of Chinese
characters to find a second “response” sequence. An interlocutor is outside the room, and you must communicate with
her using only slips of paper slid under the door. She slides a piece of paper to prompt a response from you, and you
search the book for an appropriate response. Ultimately, you find the unfamiliar squiggles that match her squiggles and
submit your response. She is under the impression that you understand Chinese, but do you?

Of course not (at least, not in any intuitive sense of understanding). It has been argued that, like you in the Chinese
room, distributional models do not truly understand situations because, like the symbols in the Chinese room problem,
the symbols in distributional models are not tied to real experience (Glenberg & Robertson, 2000). To illustrate the con-
trast, imagine sitting in your apartment, writing a paper while finishing a coffee, when suddenly the ceiling springs a
leak. You gulp down your coffee and position the mug under the leak while you search for a larger vessel. How did you
know to use the mug in this novel way? According to embodied theories, you perceive the mug's affordances
(i.e., possibilities for action; Gibson, 1979; see also Glenberg, 1997), that is, it can hold liquid. You also have experience
pouring liquid into mugs.
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But what about distributional models? At least some fail at this task. Glenberg and Robertson (2000) generated sev-
eral settings (e.g., “Zoey's roof sprung a leak while she was writing”) and a set of sentences including an afforded
(e.g., “In place of a bucket, she used her mug to catch the water”), a nonafforded (e.g., “In place of a bucket, she used
her computer to catch the water”), and a related sentence (e.g., “In place of a bucket, she used a pot to catch the
water”). Human participants had no difficulty distinguishing the afforded sentence from the nonafforded sentence: the
afforded sentence was rated as a sensible solution. However, LSA did not make the same distinction—that is, cosine
values were the same between afforded, nonafforded, and related sentences, and they did not predict human sensibility
judgments.

While distributional semantic models that take only linguistic data as input may be unable to make use of
affordances, what if distributional models are fed with embodied data (e.g., Johns & Jones, discussed below)? Are they
then able to use that sensory-perceptual data—as humans are—to recognize the affordances of the mug? Can they then
recognize that a mug can be used to temporarily contain a leaky ceiling?

3 | RECONCILIATION: A REVIEW OF HYBRID APPROACHES

In addition to differences in the type of data considered important for representing meaning, a divide across dis-
ciplinary boundaries has exaggerated the difference between distributional and embodied approaches. For
example, while embodied theorists typically rely on methods from experimental psychology and cognitive neu-
roscience, researchers working on distributional semantics are more likely to use computational methodologies.
In the last decade, however, several attempts have been made to unite distributional and embodied approaches
under a single framework. Here, we discuss the progress made by two lines of research. First, in computational
cognitive science, researchers have implemented “hybrid” computational models that combine proxies for
embodied data (typically feature-based representations, e.g., McRae et al., 2005) with distributional language
data to assess whether combining the two types of data produces more human-like semantic representations
(e.g., Andrews et al., 2009). Second, experimental cognitive science has examined the relative contributions of
embodied and distributional language information to human lexical-semantic processing (e.g., Louwerse &
Jeuniaux, 2010).

3.1 | Hybrid (distributional + embodied) models

The first attempt to combine distributional linguistic data and a proxy for embodied data in a single model (Andrews
et al., 2009; see also Steyvers, 2010) used a probabilistic Bayesian model based on the topic model (Griffiths et al., 2007)
to create a joint distribution of distributional linguistic data and perceptual feature-based data. The semantic represen-
tations that emerged from this joint distribution matched human behavior better than if the model was fed either
(a) each distribution individually or (b) both distributions independently. This suggests that the emergent representa-
tions are not simply the sum-total of feature-based and distributional linguistic representations: it is the interaction
between experiential and linguistic data that allows for more human-like semantic knowledge to emerge. (Andrews
et al., 2009). An important feature of this model is that it can essentially perform inference, providing a potential solu-
tion to the grounding problem for words experienced only via language. For example, let us say we have considerable
sensorimotor experience with coffee, but we have never drunk tea before. Via these sensorimotor experiences with cof-
fee, we have a grounded representation of coffee, where coffee is typically hot, has a dark color, is drunk for its stimu-
lating properties, is served in a mug, and so on. The words coffee and tea happen to occur in similar contexts. Thus,
even if the model has never directly experienced tea, it ascribes qualities to tea that are typical of (already grounded)
words seen in similar contexts—that is, coffee.

More recent efforts have made this inference process more explicit by training a model to infer the sensory-
perceptual properties of a concept based on the lexical associates of that concept (Hoffman et al., 2018; Johns &
Jones, 2012). For example, Johns and Jones (2012) used a global memory model, inspired by Barsalou's (1999) percep-
tual symbol systems, that integrated distributional data (word-by-context co-occurrence vectors from Wikipedia; Willits
et al., 2007) and multiple proxies for sensory-perceptual data (feature norms, McRae et al., 2005; Vinson &
Vigliocco, 2008; and modality exclusivity norms, which indicate the extent to which a given concept is experienced
across five modalities, Lynott & Connell, 2009). Not every word in the linguistic corpus has a sensory-perceptual
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representation, and so the model iteratively generates inferred perceptual representations for those words based on
their similarity to all of the words that do have some sensory-perceptual representation. But can these inferred percep-
tual representations use affordances to differentiate situations?

To test this, they used action words (e.g., hang) to stand in for sentences like “Hang the coat on the ____”° and com-
puted their average cosine with object words—the object words consisted of realistic words, afforded words, and non-
afforded words (e.g., rack, vacuum, and cup, respectively), as in Glenberg and Robertson (2000). The average cosine was
highest for realistic words (rack), then for afforded words (vacuum), and lowest for nonafforded words (cup) when the
inferred perceptual representations were used. Thus, although distributional semantic models may not be able to recog-
nize affordances when provided with only language input (Glenberg & Robertson, 2000), when the model had access to
perceptual data, it was able to “recognize” affordances, just as humans do. The model was also sensitive to sensory-per-
ceptual-based priming effects, where for example typewriter primes piano due to overlap in how the objects are manipu-
lated, despite not sharing an associative or taxonomic semantic relationship (Myung et al., 2006). These findings show
that equipping a distributional-style model with sensory-perceptual property data may effectively simulate embodied
phenomena.

Most hybrid computational models have, like Johns and Jones (2012), approached the problem of combining distri-
butional and sensory-perceptual data by inputting distributional linguistic data, in the form of semantic vectors that
have been derived from large corpora of text, alongside a proxy for embodied data into a distributional model. However,
even without using previously derived semantic vectors as the language input, it is possible for a system to learn seman-
tic relationships from co-occurrence. This was demonstrated by Hoffman et al. (2018), who combined an SRN
(Elman, 1990; see Box 1) with a hub-and-spoke architecture, an influential model of semantic memory which suggests
that conceptual knowledge consists of spatially distributed modality-specific information that converges in a central
hub (Rogers et al., 2004; for reviews, see Lambon Ralph et al., 2017; Patterson et al., 2007). The model derives semantic
representations from event-like sequences of verbal inputs and sensorimotor units, and predicts verbal and sensorimo-
tor output (see Hoffman et al., 2018, Figure 1). Within this model, the hub functionally corresponds to the hidden layer
illustrated in Box 1, and as such receives, together with the current input, a record of its prior state (essentially an
encoding of its successively prior states). This prior state encodes contextual dependencies accumulated over recent
experience.

The success of Hoffman et al.'s (2018) model shows that semantic representations can be derived from a continuous
sequence of events, as we might imagine the process unfolding in humans. And like the other hybrid models described
in this section, their model can also ascribe sensorimotor properties to concepts that do not (in the model) originally
have them, as a function of their co-occurrence with concepts that do.

Thus, a critical upshot of the models described in this section is that they shed light on potential mechanisms by
which concepts that have not been directly experienced can acquire an embodied representation: as long as we have
experienced some concepts (e.g., coffee), we can use their sensory-perceptual characteristics to build a representation of
concepts that appear in similar contexts but which we have not directly experienced (e.g., tea).” Through this kind of
“acquired embodiment,” these models also suggest a mechanism by which more abstract concepts can acquire sensory-
perceptual associations (e.g., death occurs in similar contexts to funeral, which is associated with sensory-perceptual
properties like black).

This is not to say that these more abstract concepts would be devoid of meaning if they did not “acquire”
embodiment from language. Rather, sensorimotor experience may form our earliest representations of all concepts,
even highly abstract ones. However, because more abstract concepts tend to occur in variable, spatiotemporally
extended contexts (consider that game can refer to a game of chess or a game of hockey, or that understanding jus-
tice entails apprehension of events spread over space and time; see Davis, Altmann, & Yee, 2020a, for discussion),
they are abstracted further away from those experiences (see Pulvermiiller, 2013). In addition, as discussed earlier,
systems for affect, social cognition, magnitude, temporal properties, interoception, and so on may all contribute to
the embodied experience of more abstract concepts, and thus, their representation (see also Barsalou, 1999; Vig-
liocco et al., 2009).

Thus, the “acquired embodiment” mechanism proposed by Hoffman et al. (2018) might allow us to infer, from simi-
lar concepts, experiential properties for concepts which have relatively fewer or less stable sensorimotor associations,
but it need not be the only path to embodiment of highly abstract concepts, nor is it exclusive to paradigmatically
abstract concepts. The following section further probes the interdependencies between distributional linguistic and
embodied data and reviews experimental evidence that questions whether this acquired embodiment mechanism is
plausible for humans when learning new concepts.
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3.2 | Effects of embodied and distributional linguistic information on semantic
processing

The previous section reviewed possible architectures within which distributional linguistic and embodied data might be
integrated. The experimental literature, however, complicates this picture: embodied and distributional linguistic data
may be so entangled at multiple timescales—from learning and acquisition to real-time processing—that trying to treat
them as separate and postulating a mechanism by which they are then combined may create a false dichotomy, and
may be implausible as a mechanism by which humans incorporate distributional language and embodied data in build-
ing semantic representations.

To what extent does linguistic information contribute to effects that have typically been considered as emerging due
to embodiment alone? Embodied cognition investigations of lexical-semantic processing typically do not assess the
extent to which other factors (e.g., distributional variables like word co-occurrence frequencies) could explain effects
attributed to embodiment. For example, evidence of perceptual simulation in language processing comes from studies
showing that words are processed faster when placed on a screen in their iconically canonical location—attic is
processed faster when presented at the top of a screen, while basement is processed faster when presented at the bottom
of a screen (Zwaan & Yaxley, 2003). This has been taken to suggest that we simulate situations when processing lan-
guage. The symbol interdependency hypothesis (Louwerse, 2007), however, suggests that sensory-perceptual information
is reflected in our language, and because of this, effects of embodied variables can also emerge via frequency-based
characteristics of language usage. For instance, given that English is read not only from left to right but (like most lan-
guages) from top to bottom, this account predicts that in written English, when a sentence contains both attic and base-
ment, the relative location of those physical spaces will be reflected in the word order—that is, the word attic will come
first more often than basement. This is indeed the case. Moreover, word-order frequency explains the location iconicity
effect better than a measure of location iconicity itself does, suggesting that language experience not only reflects but
may also modulate the effects of perceptual experience on language processing (Louwerse, 2008).

This is not to say that embodied factors do not play an important role in lexical-semantic processing (we saw in our
historical review of embodied semantics that they do). Rather, in this case, the distributional characteristics of a lan-
guage roughly encode embodied characteristics of perceptual experience, and these “less precise” representations can
stand in for full perceptual simulation during rapid conceptual processing, whereas resources necessary for more
detailed perceptual simulation are deployed during slower language processing or when processing images (Louwerse
& Connell, 2011; Louwerse & Jeuniaux, 2010; see also Barsalou et al., 2008; Connell, 2019; Connell & Lynott, 2013;
Louwerse et al., 2015; Santos et al., 2011). As another example, there is evidence that a word's meaning is influenced by
the embodied properties of the contexts in which it appears. Specifically, when the emotional valence, arousal, and con-
creteness (properties that arguably reflect embodied experience) of a word's average context® are analyzed, each of these
properties explains significant variance in lexical decision times and recognition memory for the word above and
beyond that explained by these same properties of the word itself (Snefjella & Kuperman, 2016). Thus, experiential
properties of the (average) contexts a word appears in become a part of that word's meaning (see also Elman, 2009;
Yee & Thompson-Schill, 2016), and these properties are reflected in lexical-semantic processing. Data like these suggest
that distributional linguistic and embodied information are intimately linked: the way we use language—and the distri-
butional characteristics that reflect this usage—is reflective of our embodied experience.

This link is complicated further by work showing that, in addition to language taking on properties of our embodied
experience, our sensory-perceptual experiences can be shaped by language. That is, labeling an object can carve bound-
aries into our experience, changing the way we activate knowledge about object concepts (e.g., Edmiston &
Lupyan, 2015) at the earliest stages of visual processing (Boutonnet & Lupyan, 2015), and even determining whether
we see something or not (Lupyan & Spivey, 2010; Lupyan & Ward, 2013). For further discussion of how language affects
perception, see Lupyan et al. (2020). All of this work is consistent with the take-home message of this review: what have
traditionally been considered “embodied” and “distributional” language-based data are so interconnected that a mean-
ingful divide cannot be made.

Another important question is how embodied and distributional linguistic information interact in learning: how
much can we learn from distributional linguistic information, and how do words come to take on the embodied proper-
ties of the contexts in which they occur? As described above, it has been proposed that we can learn embodied mean-
ings of words through acquired embodiment (e.g., Hoffman et al., 2018), whereby sensory-perceptual properties can be
attributed to, for example, more abstract concepts by virtue of them sharing linguistic contexts with concrete concepts,
(e.g., a relatively abstract concept like death might become associated with black via associations with funeral). And
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indeed, novel words can acquire embodied-like representations from purely linguistic experience (Giinther et al., 2020).
Specifically, after novel words were learned in contexts implying upwards or downwards movements, action-
congruency effects were found if participants had to access word meaning. This suggests that embodied representations
can be acquired via contextual association (see also Snefjella et al., 2020; Snefjella & Kuperman, 2016). However, when
people learned similar concepts but were tested for action-congruency effects using a task that did not require accessing
the words' meanings (Giinther et al., 2018) no action-congruency effects were observed. Thus, short-term experience
with language may not be enough to produce effects typically interpreted as reflecting obligatory engagement of embod-
ied conceptual knowledge, but such embodied properties of the linguistic context in which a novel word is learned may
be recruited when we explicitly consider the meaning of that novel word.

Learning novel words in “distributional” language contexts also seems to facilitate category learning—so long as the
novel words are presented with known words that have coherent semantic organization (Ouyang et al., 2017). For
instance, even if you do not know anything about yerba mate, finding out that it is associated with tea, cups, and cafes,
can facilitate recognition of sentences containing the novel word, as well as help you to assimilate novel words into cat-
egories (either animals or vehicles) and inductively associate novel words with the appropriate referents (Ouyang
et al., 2017). In contrast, if you only know that yerba mate is associated with other unknown words like a bombilla and
a guampa’ is unlikely to help you understand its meaning. Knowing about the associates of yerba mate informs our
semantic knowledge of yerba mate only if the associates are meaningful to us. The reader may notice the relevance of
the symbol-grounding problem here—a new word defined in terms of other, ungrounded words cannot acquire deep
meaning.

The findings reviewed above are consistent with the suggestion that distributional models that take only language
data as input may be adequate for broadly capturing semantic similarity, and emerging evidence suggests that novel
words may, to some degree, acquire embodied representations by virtue of the embodied properties of the contexts in
which they appear (Giinther et al., 2020; Snefjella et al., 2020; see also Snefjella & Kuperman, 2016). An interesting
open question is whether embodied experience alone (e.g., Ottl et al., 2017) also facilitates category learning, or whether
language is necessary for carving categorical boundaries into our experience (for review, see Lupyan, 2012). While it
seems that some categories—dense ones, with highly overlapping sensory-perceptual features across exemplars
(e.g., dark, hot beverages)—might form without language (though their formation is no doubt aided by language),
others with more abstract rules for category membership might rely on language and its co-occurrence properties
(e.g., mammals; Markman & Hutchinson, 1984; Sloutsky, 2010; see Davis & Yee, 2019, for discussion; see also
Lupyan, 2009).

3.3 | Summary of hybrid approaches

The experimental work described in this section suggests that distributional linguistic information is parasitic on per-
ceptual data—language structure comes to reflect our embodied experiences. On the converse, embodiment can, to
some degree, emerge solely as a result of distributional associations (Giinther et al., 2020; but see Glinther et al., 2018).
It is clear that there are nontrivial interdependencies between distributional linguistic information and embodied-
perceptual information (see also Andrews et al., 2014). The way that language is structured reflects the nature of our
shared embodied experiences (e.g., Louwerse, 2008), and the way we perceive our embodied experiences is shaped by
language (see Lupyan, 2012; Lupyan et al., 2020 for reviews). Thus, some form of hybrid approach that accommodates
these interdependencies is necessary for building an adequate account of semantic memory. But what is the nature of
the interdependency between distributional language and embodied data, and how does it emerge? In the sections
below, we discuss possible solutions for these issues—solutions that emerge from the accounts reviewed above—and
suggest some concrete steps for future cross-disciplinary work.

4 | IMPLICATIONS FOR THEORIES OF SEMANTIC MEMORY

As described earlier, all distributional models propose that semantic knowledge arises as a function of some cognitive
mechanism which attends to, processes, and stores the statistical regularities and associations in natural language.
Although some studies have emphasized differences between embodied and distributional accounts of semantic mem-
ory (e.g., Glenberg & Robertson, 2000), this mechanism is not so different from the mechanism by which sensorimotor
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information comes to comprise concept representations under embodied cognition theories, where the simultaneous fir-
ing of neuron assemblies sensitive to, for example, touch, taste, sight, and speech lead to the association of those experi-
ences over time (e.g., Barsalou, 1999; Damasio, 1989; Pulvermiiller, 2013). And indeed, in most hybrid computational
models, distributional linguistic and sensory-perceptual data are processed by the same mechanism (e.g., Andrews
et al., 2009; Hoffman et al., 2018). Just as reading or hearing a word entails activation of its (linguistic) contextual asso-
ciates for distributional language models, reading or hearing a word entails activation of its sensory, motoric, and per-
ceptual associates for embodied accounts. We know words by the “linguistic and perceptual company they keep”
(Louwerse, 2018).

In line with the conclusions offered by hybrid accounts, it is perfectly compatible with embodied theories for lin-
guistic labels to develop in concert with other perceptual attributes of a concept, with the difference simply being that
the event giving rise to a linguistic label is the perception of an auditory or visual word instead of a nonlinguistic sensa-
tion, perception, or action. The words are simply integrated into associated simulators in memory. Indeed, what is
sometimes cited as a strong embodied view (Barsalou, 1999; for discussion, see Meteyard et al., 2012) actually captures
both types of information, emphasizing statistical linguistic processing and embodiment. In this way, distributional and
embodied information are necessarily linked from the earliest stages: there is no meaningful separation between them,
because they are never separate. An accompanying idea is that linguistic labels represent “just” another feature of a
concept, albeit one which can activate conceptual knowledge in important (or privileged) ways (for discussion, see
e.g., Connell, 2019; Lupyan, 2012; Yee, 2019). Just as there are differences in the time course of activation for different
sensorimotor features (e.g., function and shape; Yee et al., 2011), labels may be activated faster than detailed sensorimo-
tor information. These differences need not reflect qualitative differences between “types” of feature information, but
rather differences in the level of abstraction at which each feature operates (or the contextual appropriateness of a given
feature; for discussion, see Yee & Thompson-Schill, 2016). Moreover, the label is invariant in the sense that whereas
some features may be more or less active, or entirely absent on different instantiations of a concept, the label is a feature
that, being generally applicable, can act as an anchor that binds more variable features. Perhaps because of their invari-
ance, labels are effective as a computationally inexpensive way to access conceptual knowledge.

In hybrid (embodied + distributional) computational models that incorporate sensory-perceptual information, a
mechanism is built-in by which words that refer to things that are not experienced through the senses (i.e., words for
highly abstract concepts) can “acquire” embodiment. But the evidence reviewed here suggests that even the most
abstract concepts involve some sensorimotor experience, and that linguistic labels develop in concert with perceptual
symbols. Accordingly, it is not necessary for words to “acquire” embodiment through contextual association. Rather,
even highly abstract concepts can start out with embodied associations, and then be abstracted further away from
embodied experience if they occur in more variable contexts (as concepts that are relatively more abstract do; Hoffman
et al., 2013). In such cases, language may be more important for representation and processing because of its ability to
help organize regularities in the environment, especially when those regularities are more variable or are organized via
abstract rules not consistent across sensory-perceptual experiences (for developmental review, see Markman, 1990). For
example, the linguistic label in conjunction with a prefrontal cortex-based selection mechanism may help to group
sparsely distributed features of a category (e.g., in highly abstract concepts like equivalence; Sloutsky, 2010) and/or lan-
guage may augment the environment by mediating recall and directing attention toward the features of categories and
concepts (Clark, 2006; see also Lupyan, 2012; Althaus & Mareschal, 2014; for a broad overview of these issues, see
Yee, 2019).

In addition to their ability to help group perceptual features into categories, words can also acquire category struc-
ture through language context alone in an experimental setting (Ouyang et al., 2017), suggesting that learning from lan-
guage context alone may also be sufficient to learn the types of categories important to a shared understanding of how
to categorize the world. Further pursuit of these issues might yield insight into a common critique of embodied theo-
ries: if our concept representations are built of individual experiences, how is it that we can communicate at all? How
do we know what each other is talking about? One rebuttal to this concern is that we largely experience the same
world—while many personal experiences are different, you and your neighbors have roughly the same experiences with
cars, coffee, and carpets, even if my favorite barista's coffee representation engenders a more detailed simulation than
mine does. This may be good enough—perfect representational overlap is not required to achieve successful communi-
cation, as long as there is sufficient overlap given the current communicative context (for discussion see,
e.g., Casasanto & Lupyan, 2015; Connell & Lynott, 2014; Taylor & Zwaan, 2009; Yee & Thompson-Schill, 2016). But if
we can acquire category structure through linguistic context alone, this suggests that language usage is also a powerful
mechanism through which we gain access to—and assimilate new information into—categories of knowledge that are
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largely agreed upon within human societies. Given the impressive successes of distributional models at predicting major
semantic phenomena like similarity judgments and priming, it should be no surprise that learning through language
usage facilitates learning categories and relationships thought to be shared across individuals.

The ideas synthesized here lead to a position similar in many ways to that of Clark (2006) and later, Dove (2018,
2020), who suggest that language provides another domain of perceivable objects (e.g., words) which are used—in the
same way as the sensory-perceptual properties of the external environment—for building coherent semantic representa-
tions through our fundamental ability to learn through statistical and associative regularities. That is, in a sense, their
argument is also that distributional linguistic and embodied information should not be considered distinct.'” Having
words for things helps us to abstract and organize across regularities in the environment, and the distributional proper-
ties of language may also help us to abstract and organize across regularities in words so as to reflect category structure
shared across individuals. These features of language allow our conceptual knowledge to be largely shared across mem-
bers of a community, even if finer-grained details differ with individual experience.

5 | NEXT STEPS

Cross-disciplinary approaches must be a continuing point of emphasis for further progress on these issues.
Experimental approaches must investigate how distributional and embodied information interact in learning
and representation, and what type of learning is necessary for embodied-like representations to emerge
(e.g., Giinther et al., 2020; Ottl et al., 2017). Neural investigations of this may be particularly important: given
that embodied theories hold that sensory-perceptual experience gives rise to concept representation in modality-
specific neural systems, one might ask: is there a mechanism by which linguistic context-derived representations
can come to be encoded in sensorimotor cortex? From a different angle, how do particular properties of our envi-
ronments influence (or become influenced by) distributional properties of a language? And to what extent do
these effects of our environments on distributional statistics of language interact with individual differences in
embodied experiences (e.g., discounting vs. reinforcing experiences)?

Developmental science also has a crucial role to play toward understanding the roles of embodied and distributional
language experience in building semantic memory. At the heart of both approaches is the idea that experience is central
to building conceptual representations, and that the resultant structure of semantic memory reflects those idiosyncratic
experiences. Work on embodied cognition suggests that sensory, perceptual, and motor experience contributes to con-
cept representations—that is, the more you experience something in a particular modality, the more its corresponding
concept is represented in that modality (e.g., Davis, Joergensen, et al., 2020; Yee et al., 2013). However, these investiga-
tions typically measure experience at a single timepoint, when conceptual knowledge is assessed. Understanding the
process by which experiences are laid down in sensorimotor systems over time is a ripe topic for future work. Even
more poorly understood is how the interaction between embodied and distributional language information might con-
tribute to developmental milestones. Using computational models (e.g., Andrews et al., 2009), it may be possible to
derive empirical predictions about how children might represent the meaning of concepts that they have not yet
directly experienced, by virtue of distributional associations with other, related concepts. Addressing these sorts of ques-
tions will engender a better understanding of how linguistic and embodied inputs interact from acquisition.

Computational approaches should, on the other hand, acknowledge that distributional language and embodied
information cannot be considered separately, and that even so-called abstract concepts, which seem at first to be depen-
dent on the distributional statistics of language, are not amodal—that is, even what have traditionally been considered
quite abstract concepts (e.g., truth) have embodied components (see Borghi et al., 2017, for review; see also Lynott
et al., 2020). The controlled semantic cognition approach (Hoffman et al., 2018) is a step in this direction because it
implements distributional properties (i.e., language co-occurrence) in real time using an SRN. However, this approach
might benefit from allowing the sensorimotor nodes to reflect a broader array of properties (e.g., affective qualities) and
from allowing all concepts (even highly abstract) to have some embodied experience from the outset. In addition to
accounting for the context-dependent sensorimotor representation of concepts, such models should strive to account
for the sorts of semantic phenomena (e.g., semantic similarity) that distributional models are so well-suited to
explaining. If concept representations emerge from episodes of joint linguistic and embodied experience, another inter-
esting avenue might be to integrate principles from exemplar-based models (e.g., Hintzman, 1986). Such models can
incorporate perceptual and linguistic representations within a single memory trace and learn semantic representations
from these exemplar memory traces (Johns & Jones, 2015).
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Emerging work also suggests that there may be no “one-size-fits-all” distributional language model. That is, one
model may capture behavior better for a certain type of semantic task, while another model may be better at capturing
behavior for a different one (Wingfield & Connell, 2019). Model characteristics (e.g., model type, corpus size and qual-
ity) influence how well the model captures behavior, and these effects differ as a function of the level at which the task
operates—for instance, some distributional models optimally capture synonym judgment (a relatively low-level task),
while others better explain semantic decisions (a relatively high-level task). Likewise, different semantic relationships
are best captured by different distributional language models (Brown et al., 2020). Humans may flexibly use distribu-
tional semantic knowledge as a function of situational demands (Wingfield & Connell, 2019), much in the same way
that embodied representations may be recruited to differing degrees depending on the context (see e.g., Connell, 2019;
Yee & Thompson-Schill, 2016). This work calls for a better understanding of the interplay between (different types of)
distributional language knowledge and (different types of) sensory-perceptual knowledge as conceptual processing
unfolds. Models that integrate the properties described in this review could potentially explain (a) the rich, detailed,
embodied properties of semantic representations (e.g., reliance of particular concepts on the manual modality, as in
hammer), (b) broad semantic relations that are shared across individuals (e.g., similarity across concepts, where ham-
mer is related to wrench), and (c) how distributional and embodied information interact to build concept representa-
tions based on experiential association.

6 | CONCLUSIONS

Embodied and distributional perspectives, at first glance, appear to be distinct approaches to answering the same ques-
tion: how do humans understand and represent the meaning of things? Because early distributional models handled
only linguistic data, it was suggested that the representations they contained made no contact with the world. That is,
they were ungrounded. But there is no reason for “distributional” to mean “linguistic,” and it is increasingly recognized
that distributional and embodied approaches are not mutually exclusive, and are even complementary (for further dis-
cussion, see Giinther et al., 2019). While hybrid computational approaches have treated sensory-perceptual and distri-
butional information as distinct but interacting data types, experimental approaches and embodied theories suggest
that this divide has little traction in reality. Distributional and embodied information are entangled through experien-
tial association from the earliest stages of conceptual development. The implications of this for the emergence of
embodied concept representations and implementation of these principles in formal architectures remain ripe topics
for cross-disciplinary endeavors.
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ENDNOTES

! While we refer to “semantic memory” as a singular construct in order to focus specifically on two accounts of mean-
ing, we do not intend to suggest that semantic memory independently supports the representation of meaning.
Rather, our contention is that semantic memory is part of an integrated memory system, influencing and influenced
by, among other cognitive functions, episodic memory as well as more implicit forms of memory like procedural
memory (for discussion, see Yee et al., 2018).

2 Throughout this paper, we use the word “distributional” in two different ways: distributional models refer to the cog-
nitive mechanisms, implemented in formal models, that are sensitive to distributional statistics, and that are tradi-
tionally implemented using language as the input. Distributional statistics (or distributional information) refers to
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properties of the environment (whether language or other). While language input is distributional in nature, we do
not intend to conflate language input with distributional statistics—other sorts of input (e.g., perceptual) are similarly
characterized by distributional statistics.

* We characterize these differences as “apparent” because we view them primarily as a result of methodological differ-
ences due to the type of input that is the focus of study in different disciplines.

* An exciting new field of work has begun to implement distributional principles for visual scenes (Sadeghi
et al., 2015), often using computer vision techniques (e.g., Bruni et al., 2014).

* To vocabularies of tens of thousands of words.

¢ The change from sentences to words was made because LSA (and the model of Johns & Jones, 2012) is not a model
of sentence comprehension.

7 Note that Barsalou's (1999) perceptual symbol systems can also, in principle, perform this function: as long as requisite
component simulators have been activated (e.g., cup, dark, hot, stimulating), the system can exhibit productivity by
combining known perceptual symbols into a novel concept.

# In this case, the five words preceding and five words following each instance of a word in a large corpus.

® Yerba mate is a kind of tea popular in South America. It is typically drunk out of a hollowed gourd called a guampa
and sipped from a flattened metal straw with a filter to strain the infusion. The straw is called a bombilla.

1° If one takes the perspective that sensorimotor experience is continuous, whereas language is discrete, it may seem
that they are fundamentally distinct types of data and thus ought to be processed differently. But in fact, linguistic
information is not discrete—the speech signal, for example, like sensorimotor experience, is continuous in nature,
but can be perceived categorically (Liberman et al., 1967; see Harnad, 2003, 2017 for review). The act of labeling may
be particularly important for categorical perception (e.g., Lupyan, 2017).
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