BACKGROUND

- In current views of semantic memory, conceptual knowledge about objects is represented across brain regions that are active when those objects are perceived (Adolph, 1985).
- E.g., the shape and roar of a lion is represented in visual and auditory areas, respectively.

How are different types of information (e.g., visual and auditory) integrated into a coherent whole?

- Synchronized firing of neurons may support binding features of concepts into a coherent whole (Singo & Gross, 1995).
- More early gamma activity for congruent vs. incongruent stimuli (e.g., a lion roaring vs. a lion mooing; Schneider et al., 2000; Yuval-Greenberg & Deouell, 2007).
- More late theta activity for crossmodal compared to unimodal integration (e.g., silver + loud, for whistle vs. silver + shiny, for whistle) with lexical stimuli (van Ackeren & Rueschemeyer, 2014; van Ackeren et al., 2014).

- Different frequency bands may have different roles in binding:
 - Gamma for interactions between local cell assemblies
 - Lower frequencies for long-distance interactions (van Stein & van Rensbergen, 2010; Donner & Siegel, 2011).

RESULTS

Time-frequency analyses:

When all item pairs analyzed, no effects of congruency in gamma or theta (results not shown)

METHODS

- Data collected with 256-channel EEG (EGI) cap at 500 Hz
- Preprocessing and analysis in Fieldtrip
- Average reference and FASTER channel repair and ICA functions (Nolan et al., 2010)
- Gamma analyzed with multitapers with windows of 200ms
- Theta analyzed with Morlet wavelets with a fixed width of 3 cycles

ACKNOWLEDGEMENTS

We thank Yanina Przydatek, MS, for her thoughtful contributions and expertise on time frequency analysis.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1257403. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This work supported in part by National Science Foundation Research Traineeship (NRT) grant IGE1747486, as well as a UConn Brain Imaging Research Center (BIRC) seed grant.

REFERENCES

