A Cautionary Tale About the Importance of Taking Individual Differences into Account When Examining Whether tDCS can Enhance Cognitive Control

Sydney Darling¹, Keisha Alexander¹, Hannah M. Morrow¹,², Eiling Yee¹,²
University of Connecticut¹, The Connecticut Institute for the Brain and Cognitive Sciences²

INTRODUCTION

Cognitive control: Ability to disregard irrelevant information while attending to relevant information, supported by the prefrontal cortex (PFC) (Miller & Cohen, 2001).

Can this important ability be enhanced?

Transcranial direct current stimulation (tDCS): Weak electrical current delivered to scalp, modulating likelihood of neuronal firing.

Recent meta-analysis suggests anodal tDCS over PFC may enhance cognitive control, with some setups (small anodes, extra-cranial cathodes; Imburgio & Orr, 2018)

- But even using these setups, results vary.
- Baseline individual differences in cognitive control may account for some variability in results across studies
- Most studies have fewer than 20 SS/group and do not examine whether tDCS modulates changes from pre-test to post-test

When baseline differences in cognitive control are accounted for: Does anodal tDCS over PFC (applied using a common montage: F3-RSO) enhance cognitive control in Flanker or Stroop tasks?

RESULTS (N = 52)

Flanker: No tDCS induced changes from pre- to post- test:

- Baseline Flanker effects not equivalent across Sham and Anodal participants!

Stroop: No tDCS induced changes from pre- to post- test:

- **Baseline differences in Flanker** unsurprising given broad range of pre-test scores across participants: (and modest N)
 - By chance, more sham participants (blue dots) drawn from left side of distribution

- **Despite broad range of Flanker scores,** test-retest reliability was relatively good… Suggesting that, had it existed, an effect of tDCS on Flanker should have been detectable (after controlling for baseline differences)

DISCUSSION

Data collection may(?) resume (target was 60/condition)

Currently...

- No effect of anodal tDCS over PFC on cognitive control (i.e., Flanker or Stroop incongruency effects) …with our montage and stimulation parameters
- Results highlight importance of taking individual differences into account: *If we had only compared post-test performance, we would have erroneously concluded that anodal tDCS produces a highly significant (7%) detriment in cognitive control in Flanker!*
- Reminders:
 - When using tasks with large individual differences, test large sample and/or use pre- vs. post-test design
 - Also consider test-retest reliability (not great for Stroop)

Future

- Test montage which current modeling suggests may better stimulate PFC: anode placed posterior to PFC, so midpoint of current is over PFC (Data et al., 2012)

METHODS

Anodal tDCS:

- Montage: F3-RSO
- 5x7cm saline-soaked sponges
- 1.5 mA stimulation begins 3 min before tasks, and continues throughout tasks

Stroop Task

- 5 Colors: Blue, Red, Green, Yellow, Black
- 50% Incongruent
- Respond to ink color – not text

Flanker Task

Respond to central arrow

- Congruent
- Incongruent
