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As you search through your fridge for a bottle of salad 
dressing, a voice calls, “Wasn’t last night’s sunset amaz-
ing?” It takes you a moment to consider, and before you 
can respond, your partner expresses disappointment in 
your inability to recall a memorable evening. Although 
your attention was certainly absorbed by your search for 
that elusive bottle of dressing, viewing the items in the 
fridge might have made it especially challenging to think 
about a sunset. Why? According to sensorimotor-based 
models of cognition, conceptual knowledge is grounded 
in the same sensorimotor systems used while experienc-
ing the world (e.g., Allport, 1985; Barsalou, 1999). So if 
your visual system is engaged when you are trying to 
think about something predominantly experienced visu-
ally, such as a sunset, some of the resources that normally 
help you consider (or simulate) the sunset will be unavail-
able. If your partner had instead asked about something 

experienced more in other modalities, such as an ocean 
breeze, responding might have been easier.

Evidence supporting sensorimotor-based models has 
been mounting. Brain areas involved in sensing, perceiv-
ing, and acting are also active when we read or hear 
language related to sensation, perception, and action (for 
reviews, see Barsalou, 2016; Meteyard, Cuadrado, Bahrami, 
& Vigliocco, 2012), suggesting that these brain areas sup-
port conceptual processing. However, sensorimotor activa-
tion during conceptual processing does not necessarily 
show that activity in sensorimotor systems forms a func-
tional part of conceptual representations.
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Abstract
Does the perceptual system for looking at the world overlap with the conceptual system for thinking about it? We 
conducted two experiments (N = 403) to investigate this question. Experiment 1 showed that when people make 
simple semantic judgments on words, interference from a concurrent visual task scales in proportion to how much 
visual experience they have with the things the words refer to. Experiment 2 showed that when people make the 
same judgments on the very same words, interference from a concurrent manual task scales in proportion to how 
much manual (but critically, not visual) experience people have with those same things. These results suggest that 
the meanings of frequently visually experienced things are represented (in part) in the visual system used for actually 
seeing them, that this visually represented information is a functional part of conceptual knowledge, and that the 
extent of these visual representations is influenced by visual experience.
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Rather, sensorimotor activation may be simply associ-
ated with (or peripheral to) conceptual processing 
(Mahon & Caramazza, 2008). That is, visual system acti-
vation when people think about sunsets may be a con-
sequence, rather than a functional part, of conceptualizing 
sunsets. A complementary argument has been made in 
response to demonstrations that priming the sensory 
modality associated with a concept can partially acti-
vate that concept (e.g., Connell, Lynott, & Dreyer, 2012; 
Helbig, Steinwender, Graf, & Kiefer, 2010; Vermeulen, 
Mermillod, Godefroid, & Corneille, 2009). That is, sen-
sory information could, in principle, elicit a cascade of 
activation, which in turn activates an abstract concept 
representation (Mahon & Caramazza, 2008). Each of 
these arguments—that sensorimotor activation is a con-
sequence of, and that such activation leads to, abstract 
concept processing—would suggest that this activation 
is not part of our concept representations.

To demonstrate unequivocally that activity in the 
visual system (or any sensory system) is part of a con-
ceptual representation requires showing that when that 
system is disrupted (e.g., via brain damage, stimulation, 
or an interfering task that relies on that system), process-
ing that concept is also disrupted. Yet despite the theo-
retical importance of such evidence, surprisingly little 
exists. Most comes from the neuropsychological litera-
ture. Patients with difficulty accessing concepts that are 
thought to primarily rely on a particular sensorimotor 
system (e.g., the ventral/visual-processing stream for 
animals and dorsal/object-related action stream for 
tools) tend to have brain damage affecting that system 
(for reviews, see Gainotti, 2000, 2015). Some studies 
have examined effects of interference on conceptual 
processing (primarily for actions or action-associated 
objects) in unimpaired individuals. These studies have 
generally found that interfering with (e.g., via a concur-
rent interfering task) sensorimotor activity thought to be 
associated with an action or object makes conceiving of it 
more difficult (e.g., Ostarek & Huettig, 2017, Experiment 
1; Pobric, Jefferies, & Lambon Ralph, 2010; Shebani & 
 Pulvermüller, 2013; Vukovic, Feurra, Shpektor, Myachykov, 
& Shtyrov, 2017; Witt, Kemmerer, Linkenauger, & Culham, 
2010; Yee, Chrysikou, Hoffman, & Thompson-Schill, 2013; 
but cf. Matheson, White, & McMullen, 2014).

However, most studies compare interference between 
categories of concepts (e.g., living/nonliving, concrete/
abstract). Thus, it remains possible that some categorical 
property (e.g., concreteness; Ostarek & Huettig, 2017)—
not sensorimotor experience—is responsible for the 
interference. Distinguishing among these possibilities is 
critical—a fundamental prediction of sensorimotor-
based models is that sensorimotor experience with 
things determines the extent to which sensorimotor 
information is part of their representations. So, for 

example, although concreteness is correlated with sen-
sorimotor experience, it is sensorimotor experience that 
should account for the conceptual-processing difficulty 
produced by sensorimotor interference.

Furthermore, if sensorimotor-based information is 
truly part of conceptual knowledge, this crucial relation-
ship between sensorimotor experience and interference 
may be detectable not only during deliberate verification 
or retrieval of a concept’s features (as shown, e.g., by 
Amsel, Urbach, & Kutas, 2014; Edmiston & Lupyan, 2017; 
and Ostarek & Huettig, 2017, for visual features and by 
Chrysikou, Casasanto, & Thompson-Schill, 2017, for 
manipulation information) but also when the conceptual 
task does not require accessing sensorimotor properties. 
Yet very few studies have obtained evidence that the 
relationship between experience and interference holds 
when the task does not require explicit retrieval of sen-
sorimotor information (auditory: Bonner & Grossman, 
2012; Trumpp, Kliese, Hoenig, Haarmeier, & Kiefer, 2013; 
manipulation: Wolk et al., 2005; Yee et al., 2013). And 
in the visual modality, this issue is almost entirely unex-
plored (but see Rey, Riou, Vallet, & Versace, 2017, dis-
cussed below).

Why might vision be different? One reason could be 
the importance of visual search. If representations of 
visually experienced things share resources with the 
visual system, then what you are currently looking at 
could interfere with your ability to think about the very 
thing you are searching for. Animals that rely heavily 
on vision may therefore have developed a method of 
storing conceptual information that originated via visual 
experience in a format (one that is presumably more 
abstract; see Ungerleider & Mishkin, 1982) that is not 
susceptible to interference from the current visual per-
cept. Indeed, some studies have failed to find evidence 
that concept-related visual shape information is stored 
in certain visual-perception regions (e.g., Yee, Drucker, 
& Thompson-Schill, 2010; see also Ostarek, Joosen, 
Ishag, de Nijs, & Huettig, 2019).

Here, we directly tested whether conceptual repre-
sentations of visually experienced things share resources 
with the visual system. There is some evidence that 
they may. A tone associated with a complex visual mask 
delayed semantic judgments (relative to a tone associ-
ated with a blank square) on words as a function of 
visual experience with their referents (Rey et al., 2017). 
However, because an interference control was lacking 
(e.g., a tone associated with a complex nonvisual stimu-
lus), this study leaves open the possibility that the visu-
ally experienced stimuli may have been particularly 
susceptible to interference generally. Here, we exam-
ined whether interference from a concurrent visual task 
(see Fig. 1a) when people make simple semantic judg-
ments on heard words scales in proportion to how 
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Fig. 1. Example trial sequence and results from the visual-interference condition of Experiment 1. In each trial (a), participants saw an array of four geometric non-
sense shapes, followed 500 ms later by an auditorily presented word, on which they performed a semantic judgment. Two seconds after the shapes appeared, they 
were replaced by a fixation cross for 250 ms. Then a single shape appeared, and participants indicated whether it had been present in the prior array. The scatterplot 
(b) shows the correlation between scaled visual-experience ratings and the visual-task interference effect (response time on word judgments in the interference con-
dition – response time on word judgments in the no-interference condition). Word ratings are scaled (mean-centered) for figure interpretability across experiments, 
individual points reflect the actual data points (word labels are displaced for visibility), the solid line indicates the best-fitting regression, and the error band shows 
the 95% confidence interval. The bivariate Pearson’s correlation (r) is also shown.
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much visual experience people have with the things the 
words refer to (Experiment 1). We also included a control 
interference task previously used to demonstrate the role 
of motor information in object representations (Yee et al., 
2013). This control allowed us to test whether visually 
experienced things are simply unusually susceptible to 
interference generally (Experiment 2). Furthermore, we 
included several other important controls: Critical 
words all referred to nonliving things, the semantic 
judgment was orthogonal to the amount of visual expe-
rience, and our analyses controlled for concreteness. 
These controls enabled testing of a fundamental predic-
tion of sensorimotor- based models: Conceptual represen-
tations are grounded in sensorimotor experience.

Importantly, the visual task used nonsense shapes 
unrelated to the appearance of the words’ referents—
that is, the shapes were intended to interfere with, not 
prime, the stimulus concepts. If the visual system sup-
ports representation of visually experienced things, 
then occupying it with unrelated shapes should inter-
fere more with thinking about visually experienced 
things (e.g., sunset) than infrequently visually experi-
enced things (e.g., breeze).

Experiment 1

Method

Participants. We conducted a power analysis in G*Power 
(Version 3.1; Faul, Erdfelder, Lang, Buchner, 2007) based 
on pilot data and determined that to detect an estimated 
small effect size at a power (β) of .80, we would need 199 
participants in our within-participants design. To account 
for potential experimenter and participant error, we 
recruited 205 undergraduate students from the University 
of Connecticut. Ultimately, all participants were included 
in the analyses (N = 205). Participants were compensated 
with course credit, and the study was approved by the 
University of Connecticut Institutional Review Board.

Word stimuli. Words were rated for degree of visual expe-
rience in an online norming study. Norming participants  
(N = 58) did not participate in Experiment 1 but were drawn 
from the same undergraduate participation pool. For each 
word, they rated the question, “How much visual experience 
have you had with this?” on a scale from 1 (very little) to 7 
(very much). Ratings were Winsorized at the 5th and 95th 
percentiles to minimize the influence of extreme responses. 
The mean visual rating was 4.48 (SD = 1.33, range = 2.41–
6.76). We calculated word frequency and concreteness 
following Brysbaert, Warriner, & Kuperman’s (2014) norms. 
All of the stimuli and associated ratings can be found in the 
Supplemental Material available online. Correlations among 
stimulus characteristics are shown in Table 1.

Procedure. Participants underwent a two-phase (inter-
ference and no interference) experiment. In the interfer-
ence task, participants saw an array of 4 geometric 
nonsense shapes randomly sampled from a set of 32 pos-
sible shapes (for examples, see Fig. 1a). The shapes were 
intended to be unrelated to the concepts being elicited 
(i.e., the shapes were selected so as to not resemble real-
world things). Then, 500 ms after the shapes appeared 
and while they were still on screen, participants heard a 
word (e.g., sunset, breeze), on which they performed a 
semantic judgment (“Is this an animal or not?”). Two sec-
onds after the shapes appeared, they were replaced with 
a red cross for 250 ms. Then, a single shape appeared and 
participants indicated whether that shape had been pres-
ent in the prior array. Figure 1a shows a schematic of the 
task. Half of the participants were given feedback (i.e., a 
beep) when they answered incorrectly on the shape-array 
interference task.1 In the no-interference condition, no 
shapes were presented: Participants simply performed 
the word judgment, a blank screen was shown instead of 
the array of shapes, and then participants were to click a 
button when a fixation cross appeared. Phase order was 
counterbalanced across participants. Two hundred forty 
words were presented (120 nonliving things that varied 
with respect to visual experience and 120 animals—the 
animals were unanalyzed foils, included so that half of 
the trials would elicit a “yes” response; we did not collect 
visual-experience ratings on these). Importantly, the 
answer to the critical word-judgment task was the same 
(“no”) for all of our experimental items; that is, the word 
judgment was orthogonal to the amount of visual experi-
ence. The word lists presented in the interference and 
no-interference conditions were counterbalanced across 
participants. Critically, the exact same words were used 
(between participants) in the interference and no-inter-
ference conditions, so that any interference effects would 
not be due to properties of the words themselves.

Data analysis. Data were analyzed in the R program-
ming environment (Version 3.5.1; R Core Team, 2018) 
using the lme4 package (Bates, Mächler, Bolker, & Walker, 

Table 1. Pearson’s Correlations Among Stimulus 
Characteristics

Variable
Visual 
rating

Manual 
rating Duration

Log 
frequency

Visual rating —  
Manual ratinga .50** —  
Duration .06 –.19* —  
Log frequency .19* .23* –.35** —
Concreteness .63** .19* –.04 .10

aManual ratings were collected in Experiment 2.
*p < .05. **p < .001.



Making It Harder to “See” Meaning 5

2015). The raw data and analysis scripts are available in 
the Supplemental Material. Models were constructed 
with visual experience with a given item (measured as a 
continuous variable) and interference condition (inter-
ference vs. no interference) as the primary fixed effects 
and with random slopes for both participant (1 + exp_
cond|participant) and word (1 + exp_cond|word) as a 
function of interference condition, where exp_cond 
refers to interference condition. Word length (i.e., dura-
tion of the sound file), word frequency (log-transformed 
SUBTLEX frequency; Brysbaert et al., 2014), and con-
creteness were included in the models as control factors. 
The critical effect of interest was the interaction between 
visual experience and visual interference. This interac-
tion, in which the effect of interference increases as a 
function of visual experience, can be interpreted as show-
ing an overlap in systems for performing the visual task 
and representing visual knowledge about a concept. 
Although we also initially included random slopes for 
visual experience, concreteness, and their respective inter-
actions (Barr, Levy, Scheepers, & Tily, 2013), these models 
did not converge. Accordingly, we removed random 
effects until convergence was achieved, starting with the 
random slopes for the interactions, then for the continu-
ous word-level variables, and finally the random inter-
cepts for participant and word. We were able to retain the 
interference-condition random slopes crossed with word 
and participant, which were most theoretically important 
to retain because of participant- and word-level variability 
in response to interference (see Matuschek, Kliegl, Vasishth, 
Baayen, & Bates, 2017). The primary dependent measures 
were response time (RT, assessed using linear mixed-
effects models) and accuracy (assessed using logistic 
mixed-effects models) on the word-judgment task. Because 
RTs were measured from the onsets of the auditory words, 
RTs shorter than 150 ms were unlikely to reflect process-
ing of the auditory words and were removed.

The models were constructed in three steps: (a) a 
control main-effects model with interference condition, 
each of the control variables (duration, frequency, con-
creteness), and visual experience; (b) a control model 
testing the Concreteness × Visual Interference interac-
tion; and (c) the critical Visual Experience × Visual 
Interference interaction model, which tested whether 
visual experience accounted for visual interference over 
and above any effects of concreteness. Within a given 
model, we report effects as the model estimates (or for 
logistic models, odds ratios, or ORs). When the OR is 
less than 1, we report the inverse odds for interpret-
ability (1/OR). For linear and logistic models, respec-
tively, |t| and |z| values greater than 2 were considered 
statistically significant. Likelihood-ratio tests were used 
to evaluate the statistical significance of each successive 
model, and here, p values less than .05 were considered 
statistically significant.

Results

Word-judgment task. On the word-judgment task, par-
ticipants were faster and more accurate in the no-interfer-
ence condition than in the interference condition (RT:  
M = 925 ms, SD = 222 and M = 1,072 ms, SD = 265, 
respectively; accuracy (proportion of correct responses): 
M = .988, SD = .108 and M = .981, SD = .183, respec-
tively). The models assessed effects on these word judg-
ments. The control main-effects model showed significant 
effects of interference condition; RTs were estimated to be 
about 161 ms slower under visual interference (95% con-
fidence interval, or CI = [140, 182]), β = 0.63, SE = 0.04, 
t(203) = 15.17, p < .001.2 There was also an effect of word 
duration—for each 100 ms of increased duration, RTs 
were about 26 ms slower (95% CI = [18, 34]), β = 0.11, 
SE  = 0.02, t(112) = 6.48, p < .001—and an effect of 
concreteness— greater concreteness (in units of concrete-
ness on a scale from 1 to 7) was associated with RTs that 
were about 20 ms slower per unit (95% CI = [4, 35]), β = 
0.05, SE = 0.02, t(113) = 2.48, p = .015.3 The control model 
testing for an interaction between concreteness and 
visual interference did show an interaction; the response-
slowing effect of visual interference increased with con-
creteness by about 12 ms per unit (95% CI = [3, 21]), β = 
0.03, SE = 0.01, t(108) = 2.57, p = .012. A likelihood-ratio 
test comparing the concreteness model with the model 
with only the main effects showed that this concreteness 
model was more predictive than the main-effects model, 
χ2(1) = 6.41, p = .011.

The model testing our critical prediction—that visual 
experience with things influences the extent to which 
they are represented in the visual system—showed an 
interaction between visual experience and visual inter-
ference, in which the response-slowing effect of visual 
interference increased as the amount of visual experi-
ence (in units visual experience, on a scale from 1 to 
7) increased, by about 8 ms per unit (95% CI = [2, 14]), 
β = 0.04, SE = 0.02, t(115) = 2.80, p = .006. Importantly, 
this model was significantly more predictive than the 
model with the concreteness interaction alone, χ2(1) = 
7.67, p = .006.4 To show the effect of visual experience, 
we used the raw data to plot, for each item, the size of the 
interference effect (RT in the interference condition – RT 
in the no-interference condition) against the visual-
experience rating for that word (see Fig. 1b).

The accuracy data were analyzed in the same way 
as the RT data.5 There was a significant main effect of 
visual interference; participants were 1.69 times less 
likely to respond accurately under interference (OR = 
0.59, 95% CI = [0.47, 0.74]; z = –4.52, p < .001). There 
were also main effects of duration and concreteness; 
participants were 1.37 times more likely to respond 
accurately for every 100-ms increase in duration (OR = 
1.37, 95% CI = [3.25, 175.08]; z = 3.15, p = .002) and 
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1.92 times less likely to respond accurately with each 
unit increase in concreteness (OR = 0.52, 95% CI = [0.34, 
0.77]; z = –3.25, p = .001). However, there were no 
interactions with visual interference (zs < 1, n.s.); thus, 
the accuracy data are reported here for completeness 
but will not be discussed further.

Visual-shape-judgment task. The interfering visual-
shape-judgment task was quite difficult, as reflected by 
low accuracy (M = .656, SD = .475). Models analogous to 
those described above revealed that neither accuracy nor 
RT (M = 830 ms, SD = 480) on the task was predicted by 
visual ratings, nor were there any effects of duration, fre-
quency, or concreteness.

Discussion

Overall, Experiment 1 showed that visual interference 
slowed semantic judgments on words as a function of 
the degree of visual experience with the words’ refer-
ents. This effect was attributable to visual experience, 
over and above the effect of concreteness.

Experiment 2

Experiment 1 suggests that visual experience drives the 
extent to which concepts for visually experienced things 
are grounded in the visual system. However, it remains 
possible that among the tested items, those involving 
more visual experience were, for some unanticipated 
reason, especially susceptible to interference generally 
(rather than particularly susceptible to visual interfer-
ence). To investigate this possibility, in Experiment 2, we 
employed a manual-interference task on the same stimuli. 
Including this condition also allowed us to test, for the 
same words, the predictions of sensorimotor-based mod-
els in a different modality. That is, the processing diffi-
culty elicited by manual interference should be accounted 
for by manual experience (as in Yee et al., 2013).

Method

Participants. Participants were 198 undergraduate stu-
dents from the University of Connecticut who had not 
participated in Experiment 1. Again, all participants were 
included in the analyses (N = 198). They were compen-
sated with course credit.

Word stimuli. Words were the same as those used in 
Experiment 1. Because Experiment 2 used a manual-
interference task, we collected manual-interference ratings 
to explore whether manual- rather than visual-experience 
ratings might explain any interference effects observed in 
Experiment 2. Norming participants (N = 60) did not 

participate in Experiment 2 but were drawn from the 
same undergraduate participant pool. They rated each 
word for manual experience: “How much experience 
have you had touching this with your hands?” Manual rat-
ings were collected and treated in the same way as the 
visual ratings collected alongside Experiment 1. The mean 
manual rating was 2.94 (SD = 1.43, range = 1.00–6.22).

Procedure. In the interference condition, participants 
performed a concurrent manual task from the study by 
Yee et al. (2013) throughout the experiment (see Fig. 2a) 
while making the word judgment with their feet on a but-
ton box placed on the floor. In this task, participants 
repeatedly moved their hands through a series of three 
simple motions performed on a table. The motions were 
selected by Yee et al. to be unlikely to be associated with 
any objects, particularly when performed as a continuous 
sequence, and the task has been shown to disrupt pro-
cessing of concepts experienced predominantly in the 
manual modality (e.g., hammer; Yee et al., 2013). While 
participants performed the hand movements at their own 
pace, they were encouraged to speed up if they did not 
complete at least one cycle of the three hand movements 
per word. Otherwise, the procedure was identical to that 
used in Experiment 1, except that in the no-interference 
condition, as in the manual-interference condition, par-
ticipants used their feet to respond.

Data analysis. Data were analyzed in the same way as 
in Experiment 1.

Results

In Experiment 2, participants again responded more 
quickly and accurately on the word-judgment task in 
the no-interference condition than in the interference 
condition (RT: M = 955 ms, SD = 227 and M = 1,021 ms, 
SD = 284, respectively; accuracy: M = .973, SD = .164 
and M = .949, SD = .219, respectively).

In the main-effects model, interference condition, 
duration, and concreteness had statistically significant 
effects on RTs. Responses were estimated to be about 
77 ms slower in the interference condition (95% CI = 
[59, 94]), β = 0.30, SE = 0.03, t(205) = 8.70, p < .001, and 
were also slower with increasing duration by about 15 
ms per 100 ms of duration (95% CI = [79, 231]), β = 
0.07, SE = 0.02, t(112) = 4.24, p < .001, and with increas-
ing concreteness by about 14 ms per unit of concrete-
ness (95% CI = [0, 29]), β = 0.04, SE = 0.02, t(112) = 
2.01, p = .047, the same pattern as observed in Experi-
ment 1. The control model testing for an interaction 
between interference and concreteness, β = 0.002,  
SE = 0.01, t(113) = .11, p = .912, was no more predictive 
than the main-effects model, χ2(1) = 0.01, p = .911.
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Fig. 2. Example trial sequence and results from the manual-interference condition of Experiment 2. In each trial (a), participants repeatedly moved 
their hands through a series of three simple motions performed on a table (task adapted from the study by Yee, Chrysikou, Hoffman, & Thompson-
Schill, 2013). Participants also heard an auditorily presented word, on which they performed a semantic judgment. The scatterplot in (b) shows 
the relation between scaled visual-experience ratings and the manual-task interference effect (response time to word judgments in the interference 
condition – response time to word judgments in the no-interference condition). The scatterplot in (c) shows the relation between scaled manual-
experience ratings and the manual-task interference effect. In (b) and (c), word ratings are scaled (mean-centered) for figure interpretability across 
experiments, individual points show the actual data points (word labels are displaced for visibility), the solid line indicates the best-fitting regression, 
and the error band reflects the 95% confidence interval. The bivariate Pearson’s correlation (r) is also shown for each plot.
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The critical model with the Visual Experience × Man-
ual Interference interaction, β = 0.03, SE = 0.02, t(113) = 
1.56, p = .121, was, as expected, no more predictive 
than the concreteness interaction model, χ2(1) = 2.42, 
p = .120. This, together with follow-up analyses 
(described below), suggests that the results of Experi-
ment 1 did not simply reflect items involving more 
visual experience being especially susceptible to inter-
ference in general, rather than visual interference in 
particular. When analogous models were tested using 
errors, the same main effects were observed for accu-
racy; participants were 2.04 times less likely to respond 
accurately under interference (OR = 0.49, 95% CI = 
[0.42, 0.57]; z = –9.30, p < .001), 1.16 times more likely 
to respond accurately per 100-ms duration (OR = 1.16, 
95% CI = [1.01, 1.31]; z = 2.52, p = .012), and 1.45 times 
less likely to respond accurately per unit concreteness 
(OR = 0.69, 95% CI = [0.54, 0.88]; z = –3.10, p = .002). As 
in Experiment 1, in accuracy, there were no interactions 
between interference (here, manual) and concreteness, 
visual experience, or the manual-experience measure 
described below; thus, the accuracy data are reported 
here for completeness but not discussed further.

Returning to RTs, we tested a further interaction 
model with a Manual Experience × Manual Interference 
interaction to learn whether, in line with Yee et  al.’s 
(2013) findings, manual experience could explain the 
effect of manual interference. Consistent with the 
results of this prior study, this interaction was signifi-
cant; the response slowing induced by manual interfer-
ence increased as a function of manual experience (in 
units of manual experience on a scale from 1 to 7) by 
about 8 ms per unit (95% CI = [1.92, 13.82]), β = 0.04, 
SE = 0.02, t(113) = 2.61, p = .010. Furthermore, includ-
ing this manual-experience interaction made the model 
significantly more predictive than the model with only 
the concreteness and visual-experience interactions, 
χ2(1) = 6.63, p = .010, and importantly, when manual 
experience was included, the effect of visual experience 
was reduced from marginal (p = .121) to nonexistent, 
β = 0.005, SE = 0.02, t(114) = 0.24, p = .81, suggesting 
that the marginal effect of visual experience was due 
to shared variance between manual- and visual-expe-
rience ratings rather than visual experience per se. Fig-
ure S2 in the Supplemental Material shows the relation 
between manual interference and manual experience 
after the latter has been residualized on visual experi-
ence. (Fig. S1 in the Supplemental Material shows the 
relation between visual interference and visual experi-
ence after the latter has been residualized on manual 
experience).

Thus, items involving more visual experience were 
not as susceptible to interference in a different modal-
ity (i.e., manual; see Fig. 2b) as they were to visual 

interference, and the nonsignificant positive relationship 
between visual experience and manual interference was 
entirely accounted for by manual experience. We also 
conceptually replicated6 Yee et al.’s (2013) findings by 
showing that interference induced by a manual task 
increases as a function of the degree of manual experi-
ence associated with a concept (see Fig. 2c).

For completeness, we also conducted an exploratory 
analysis using the manual ratings that we collected in 
Experiment 2 to test whether the effect of visual inter-
ference observed in Experiment 1 could be predicted 
by manual experience—our account predicts that the 
effect of visual interference should be better explained 
by experience in the same (i.e., visual) modality than 
by experience in a different modality. As expected, the 
effect of manual experience on visual interference was 
not significant (i.e., a response-slowing effect of about 4 
ms; 95% CI = [–0.69, 8.81]), β = 0.02, SE = 0.01, t(110) = 
1.69, p = .093. Further, when we used a likelihood-ratio 
model to compare the model that included only the 
Visual Experience × Visual Interference interaction 
(described in Experiment 1) with the model that included 
both a visual-experience interaction and a Manual Experi-
ence × Visual Interference interaction, the inclusion of 
the manual-experience interaction did not significantly 
increase the model’s fit to the data, χ2(1) = 2.83, p = .093.

Evaluating the evidence for modality 
specificity in the effects of experience 
on interference

Although the effect of manual experience on visual 
interference was nonsignificant, it approached signifi-
cance, raising an important question: How strong is the 
evidence that interference from a visual task is better 
predicted by visual than by manual experience?7 To 
assess this, we were inspired by Ostarek et al. (2019) 
to conduct follow-up Bayesian analyses using the brms 
package in R, which allows one to use identical fixed 
and random-effects structures to those implemented in 
lme4 (Bürkner, 2017). Briefly, we used the higher-order 
models from Experiments 1 and 2, including both the 
visual- and manual-experience interactions in each to 
directly compare the visual- and manual-experience 
interactions. Because Bayesian models are less suscep-
tible to convergence issues than linear mixed-effects 
models, we were able to include by-participant random 
slopes for the interactions between our item-level vari-
ables (visual experience, manual experience, and con-
creteness) and interference condition. Priors for the 
interactions among concreteness, manual experience 
and interference, and visual experience and interfer-
ence were set on the basis of similar previous research 
(e.g., Edmiston & Lupyan, 2017; Ostarek & Huettig, 
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2017; Ostarek et al., 2019; Yee et al., 2013). Importantly, 
to be conservative, we set the prior for the secondary 
experience variable (e.g., manual experience in the 
visual-interference experiment) to be positive (it was 
the same as that for the concreteness interaction).8 Fol-
lowing Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 
(2010), we used the Savage-Dickey method to generate 
estimates and 95% credible intervals (CrIs) for each 
fixed effect and then computed Bayes factors (BFs) to 
describe the evidence in favor of both the null (BF01) 
and directional (BFdir) hypotheses. In both cases, BFs 
larger than 1 indicate evidence in favor of the hypothesis 
(i.e., in favor of the null or directional hypothesis, 
respectively), whereas BFs less than 1 indicate evidence 
against the hypothesis. Greater distance from 1 reflects 
stronger evidence; for example, a BF01 of 2 reflects 2 
times as much evidence for the null compared with the 
alternative hypothesis, and a BF01 of 0.25 reflects 4 
times (1/0.25 = 4) as much evidence for the alternative 
compared with the null hypothesis (Wagenmakers 
et al., 2010).

Importantly, using Bayesian analyses, we can directly 
compare two fixed effects and evaluate the evidence 
that one is greater than the other. For Experiment 1, 
this analysis (based on 100,000 samples from the pos-
terior distribution for each of four model chains) pro-
duced an estimate of the visual-experience interaction 
(9.34, SE = 1.95, 95% CrI = [6.11, 12.57], BF01 < 0.01, 
BFdir > 2,000) that was larger than that of the manual-
experience interaction (3.16, SE = 1.90, 95% CrI = [–0.03, 
6.14], BF01 = 1.36, BFdir = 18.42). Most critically, the 95% 
CrI for the difference between the visual- and manual-
experience interactions did not contain zero (estimate 
of difference = 6.18, SE = 3.16, 95% CrI = [1.13, 11.54], 
BF01 = 1.99, BFdir = 34.71), providing considerable evi-
dence that interference from a visual task is better 
predicted by visual than by manual experience.

Similar results (in the opposite direction) were 
observed for Experiment 2. The estimate of the manual-
experience interaction (8.91, SE = 2.10, 95% CrI = [5.58, 
12.44], BF01 < 0.01, BFdir > 2,000) was larger than the 
estimate of the visual-experience interaction (–2.58,  
SE = 2.01, 95% CrI = [–5.97, 0.66], BF01 = 2.34, BFdir = 
0.10; note that there was evidence against the direc-
tional visual-experience interaction). Most importantly, 
the 95% CrI for the difference between the manual- and 
visual-experience interactions did not contain zero 
(estimate of difference = 11.48, SE = 3.34, 95% CrI = 
[6.31, 17.05], BF01 = 0.09, BFdir = 1999), providing strong 
evidence that interference from a manual task was bet-
ter predicted by manual than by visual experience.

A final test of whether concepts predominantly expe-
rienced through vision are particularly susceptible to 
visual interference should compare across experiments 

to evaluate whether visual experience predicts visual 
better than manual interference. To do this, we com-
piled the data from Experiments 1 and 2 into one data 
set and computed an interference effect (RT in the 
interference condition – RT in the no-interference con-
dition; see Figs. 1b, 2b, and 2c) for each item in each 
experiment (averaged over participants). The model 
was constructed with interference effect as the depen-
dent measure and experiment (visual, manual), dura-
tion, frequency, concreteness, visual experience, manual 
experience, and the interactions among concreteness, 
visual experience, manual experience, and experiment 
as the predictors. Priors for the control variables were 
set to 0 (SE = 1) because we did not expect them to 
predict interference. The prior for the concreteness 
interaction was also set to 0 (SE = 1) because it should 
equally predict visual and manual interference. Priors 
for the visual- and manual-experience interactions were 
equal to the difference between the priors used in the 
Bayesian analyses described above for Experiments 1 
and 2 (e.g., prior for Visual Experience × Visual Inter-
ference interaction – prior for Visual Experience × 
Manual Interference interaction), as this difference 
should reflect the Experience × Experiment interaction. 
There was substantial evidence that visual experience 
better predicted visual than manual interference (esti-
mate = 10.17, SE = 2.25, 95% CrI = [6.57, 13.98], BF01 = 
0, BFdir > 2,000) and substantial evidence that manual 
experience better predicted manual than visual interfer-
ence (estimate = –8.05, SE = 2.33, 95% CrI = [–12.80, 
–3.25], BF01 = 0.8, BFdir = 665.67).

Thus, Bayesian follow-up analyses provide support 
for the conclusion that more visually experienced things 
are particularly susceptible to interference in the visual 
modality and more manually experienced things are 
particularly susceptible to interference in the manual 
modality.

General Discussion

Performing a concurrent visual task slowed concept pro-
cessing as a function of the amount of visual experience 
that people have with a word’s referent. Returning to our 
opening scene, if your visual system is occupied by the 
complex array of items in the fridge, it will be more dif-
ficult to think about something with which you have 
substantial visual experience, such as a sunset, than 
something less visually experienced, such as a breeze.

In contrast, for the same judgments on the very same 
words, a concurrent manual task produced a different 
pattern: Conceptual processing slowed more as a func-
tion of manual experience. Thus, the relationship 
between visual interference and visual experience in 
Experiment 1 was not simply an effect of interference 
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broadly. If you had been rolling out dough when asked 
to think about the sunset, you would have been no 
slower to think about it than the ocean breeze, as the 
motor system resources used for rolling out dough do 
not overlap with the visual resources required to think 
about sunsets. You might, however, be slower to think 
about a shovel you had used to build a sandcastle, as 
the motor resources for rolling out dough overlap with 
those that represent the meaning of shovel.

These findings have several implications. First, they 
provide strong evidence for a fundamental prediction of 
sensorimotor-based models (e.g., Allport, 1985; Barsalou, 
1999)—conceptual representations are grounded in sen-
sorimotor experience. Second, aspects of the representa-
tions of visually experienced things share resources with 
the visual system. Finally—and critically—these aspects 
are a functional part of representations. Although ear-
lier neuroimaging work suggested that the visual system 
is active when the meaning of visually experienced 
things is being processed (for a review, see Meteyard 
et al., 2012), the present findings show that this activity 
plays a functional role in understanding their meaning.

Our results converge with evidence that when one 
makes explicit judgments about visual properties of 
things (e.g., judging whether “Does it have stripes?” 
applies to tiger), viewing a visual noise pattern is more 
disruptive than when making judgments about ency-
clopedic properties (Edmiston & Lupyan, 2017). They 
are also consistent with evidence that visual noise can 
disrupt concreteness judgments for concrete concepts 
more than abstract ones (Ostarek & Huettig, 2017, 
Experiment 1), presumably because concrete—but not 
abstract—things can be experienced visually. These 
studies, however, required judgments explicitly related 
to the featural dimension of interest (i.e., explicit judg-
ments about visual properties or concreteness judg-
ments wherein all concrete items were highly visually 
imageable), whereas we show that visual experience 
can affect conceptual processing even when the task is 
orthogonal to that experience.9 Relatedly, we show that 
(as also suggested by Rey et al., 2017) it is the amount 
of visual experience, not concreteness, that determines 
the visual system’s involvement in conceptualization.

Interestingly, in exploratory analyses, we observed a 
trend whereby manual experience with things may be 
associated with slowed processing under visual interfer-
ence. Whereas Bayesian analyses provided substantial 
evidence that visual interference was better predicted by 
visual than manual experience, the trend still merits con-
sideration. In particular, it is important to consider which 
components of the visual system may have been engaged 
by the visual-interference task. Given that visual informa-
tion is processed in both a ventral (“what”) and a dorsal 
(“how”) stream (Goodale & Milner, 1992), one possibility 

is that our visual task also, to some degree, occupied the 
“how” stream, which supports processing of object 
manipulability (e.g., Almeida, Mahon, & Caramazza, 
2010; Chao & Martin, 2000), and interference of this 
dorsal stream may have driven the (trend toward) inter-
ference from our visual task on processing frequently 
manually experienced things. In fact, there is functional 
MRI evidence that a shape task very similar to ours 
engages not only the lateral occipital complex, a higher-
level region of the ventral stream involved in encoding 
object shape, but also the superior parietal lobe, which 
is part of the dorsal stream (Song & Jiang, 2006). Future 
work should investigate whether the effects observed 
here persist with lower-level visual interference. They 
may not—during sentence comprehension, perceptual 
simulation is not affected by interference targeting low-
level visual processing, although progressively modify-
ing the interference task to target higher levels of the 
visual system appears to gradually increase its effect on 
perceptual simulation (Ostarek et al., 2019).

Conclusion

As predicted by sensorimotor-based models of cogni-
tion (e.g., Allport, 1985; Barsalou, 1999), the more 
something is experienced visually, the more its concep-
tual representation shares resources with those involved 
in visual processing. This has the perhaps counterintui-
tive implication that when you are looking for some-
thing, having to scan through unrelated things could 
interfere with your ability to think about the very thing 
you are searching for. That is, we do not represent the 
target concept using only abstract information divorced 
from the visual substrates used to concurrently process 
visual input—rather, we rely on those substrates for its 
conceptual representation, in proportion to the amount 
of visual experience that contributed to that representa-
tion. Perhaps this contributes to why it can be so hard 
to keep what you wanted in mind once you open the 
refrigerator door and look inside.
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Notes

1. We were interested in exploring whether paying greater 
attention to the shape-array task would affect interference 
for visually experienced words. Thus, we provided feedback 
to half of the participants in an effort to increase attention to 
the shape-array task. Although feedback did increase response 
times (RTs), it did not interact with our fixed effects (t < 1), and 
so we have omitted feedback from our models.
2. Although the methods for estimating p values and degrees 
of freedom in mixed models remain under debate (e.g., Bates 
et al., 2015), to facilitate comparison of our findings with exist-
ing literature, we provide approximations of these values using 
the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 
2017) to estimate degrees of freedom for linear models and to 
estimate p values for both linear and logistic models.
3. This effect of concreteness on RTs (and the effect on accu-
racy described in the next paragraph, as well as the concrete-
ness effects described in Experiment 2) runs counter to typical 
concreteness effects, in which responses are facilitated for more 
concrete items. This reversal is due in part to the interference 
condition, in which it is attributable to the correlation between 
visual experience and concreteness (see Table 1); that is, more 
concrete items also tend to be more visually experienced and 
so are particularly susceptible to visual interference. However, 
we suspect that this finding may also be partially attributable 
to our “animal-judgment” task—many of our more concrete 

items (e.g., asteroid, aquarium) can move or have moving fea-
tures, making it harder to reject them as animals (Goldberg & 
Thompson-Schill, 2009) compared with more abstract items that 
cannot move (e.g., bitterness, chill).
4. In contrast, when we reversed Models 2 and 3, so that the 
concreteness interaction was added to a model including the 
visual-experience interaction, it was no more predictive than 
the model with the visual-experience interaction alone, χ2(1) = 
0.05, p = .821.
5. In models with accuracy as a dependent measure, the random-
slopes models did not converge. Thus, we used random intercepts 
in these cases. Although this can lead to inflation of Type I error 
(Barr et al., 2013), other alternatives to logistic mixed-effects mod-
els (e.g., separate by-participant and by-item analyses, also known 
as F1 × F2 analysis) can lead to spurious results (Jaeger, 2008), and 
so we used intercepts-only models. Ultimately, the results of these 
accuracy models had no bearing on our conclusions.
6. Yee et al. (2013) used different conceptualization tasks and 
verbal, rather than button-press, responses. In that study, RT 
effects trended in the direction observed in the current work, 
and significant interactions between manual interference and 
experience were observed in accuracy.
7. We thank an anonymous reviewer for raising this key issue.
8. Specifically, we approximated the average (standardized) 
effect size in these studies (a small to medium effect), and 
because brms priors are specified in coefficient units, we trans-
lated these effect sizes to the expected unstandardized coeffi-
cients that would be returned by the linear mixed-effects model. 
Priors for the main effect of interference and control variables 
were simply derived from the other experiment; that is, because 
interference in Experiment 2 produced an RT-slowing effect of 
100 ms with a standard error of 10, the corresponding prior in 
Experiment 1 was set as 100 (10).
9. When one performs a task in which conceptual processing is 
not required (e.g., lexical decision), viewing a visual noise pat-
tern does not delay responses more for concrete than abstract 
words (Ostarek & Huettig, 2017, Experiments 2 and 3). We con-
cur with Ostarek and Huettig that such task differences suggest 
that a concept’s visual features may not be activated in every 
context (for a discussion of this issue, see Yee & Thompson-
Schill, 2016).
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